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This paper discusses the theory of the reflexion and scattering by an irregular 
coastline of a PoincarB-type wave on a rotating ocean. It is assumed that the 
coast is straight except for small deviations from the rectilinear form, and that 
these deviations may be regarded as a random function of position along the 
coast. The rigorous theory of energy-transfer processes in random media is 
applied to determine the power flux from the incident Poincard wave into the 
scattered Kelvin wave, which propagates in a unique direction along the coast, 
and into Poincard ocean wave noise. The relative efficiencies of generation of these 
waves is examined in some detail, and studied in particular for varying ranges of 
values of certain non-dimensional parameters characterizing the coastal con- 
figuration. Detailed estimates are given for a shoreline whose irregularities are 
specified by a Gaussian spectrum of Fourier components, and the results extra- 
polated in the concluding section of the paper to give a general qualitative dis- 
cussion of the effects of an arbitrary coastline on an incident wave. 

1. Introduction 
When a freely propagating Poincark wave (see equations (3.1) and (3.2) below) 

impinges on a coastline it is subject to several distinct attenuation mechanisms. 
Of course in the case of an extensive and essentially straight coast most of the 
incident energy is specularly reflected. However, if the shoreline is irregular 
a significant amount of energy can be dissipated or scattered. Local small-scale 
topographic features near the shore are responsible for small-scale turbulent 
mixing and consequent dissipation of wave energy into heat. For long waves this 
mechanism is generally unimportant compared with viscous eddy diffusion in 
the coastal boundary layer. The latter is also enhanced by the presence of larger- 
scale topographic features in the following sense. Coastal irregularities generate 
a scattered wave field which may be divided into two distinct parts. The first 
is the relatively low-frequency ‘ocean wave noise ’, with characteristic periods of 
hours, and consists of a. random field of Poincar6 waves scattered out of the 
incident waves by the coastal irregularities. Second, the same process is re- 
sponsible for the generation of Kelvin waves whose energy is trapped against the 
coast and thereby dissipated in the coastal boundary layer. 
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Pinsent (1972) has recently studied the effects of coastal irregularities on 
incident Poincar6 waves. His results are based on a second-order perturbation 
expansion in powers of a small parameter describing the relative magnitude of the 
coastal irregularities. Such an approach would not be expected to be appropriate 
in situations involving extensive coastlines because of the occurrence of secular 
terms. However, the presence of scattered Poincar6 and Kelvin waves is con- 
firmed. 

I n  this paper an attempt is made to  generalize the work of Pinsent in order to 
deal with extensive coastlines. Such problems are conveniently analysed in terms 
of the theory of wave propagation in random media discussed by Howe (1971, 
1972a). Bctually we shall consider a somewhat simplified version of Pinsent's 
problem in that it will be assumed that the ocean has constant depth. Inclusion 
of variable depth would be too difficult in the present approach, but it is argued 
that, in spite of this, our conclusions regarding the partition of energy between 
the scattered Kelvin and Poincar6 modes would have general indicative value 
for actual coastlines. We shall also assume that the irregularities of an almost 
rectilinear coastline may be regarded as a stationary random function of position 
along the coast. For an incident Poincar6 wave we shall derive an expression for 
the reflexion coefficient of the specularly reflected coherent wave ( 5  3). This result 
may alternatively be obtained by summing an infinite subseries of secular terms 
in a formal perturbation expansion (cf. Frisch 1967). 

In  9 4 an expression is obtained for the power flux into the scattered field per 
unit length of coast. A remarkable feature of this result is that when attention 
is confined to the mean flux per unit length of coast, the expression reveals 
unambiguously, and without recourse to the asymptotic evaluation of Fourier 
integrals, the manner in which the scattered, random wave energy is distributed 
amongst the Poinear6 and Kelvin wave modes. The mathematical and physical 
concepts underlying these energy-transfer mechanisms are discussed in some 
detail. 

The results obtained in $5 3 and 4 are analysed in the geophysical context in fj 5. 
I n  particular an estimate is obtained for the proportion of the incident energy 
lost to the scattered field. Also the variation in intensity of the scattered Kelvin 
waves, as a function of the angle of incidence and frequency of the incident 
Poincark wave, is examined for a Gaussian coastline. Pina811y the partition of 
the scattered energy between the Kelvin and Poinear6 modes is discussed. 

2. Formulation of the scattering problem 

shallow-water wave equations for a uniformly rotating fluid assume the form 
We adopt a system of rectangular co-ordinate axes with respect to which the 
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FIGURE 1. Irregular coastal configuration. The whole system rotates about a vertical 
axis with angular velocity 4 f. A Poincar6 wave incident a t  an angle 0 to the mean normal 
to  the coastline generates (i) a specularly reflected Poincar6 wave, (ii) diffusely scattered 
Poincar6 ocean wave noise, (iii) a coastal Kelvin wave. 

where (u,v) is the horizontal fluid velocity and q5 the surface elevation of the 
fluid above the undisturbed level; f, g and h respectively denote the Coriolis 
parameter, the acceleration due to gravity and the undisturbed depth. Without 
loss of generality it is assumed that f > 0. 

Taking the Fourier transform of equations (2.1) with respect to time, i.e. 
assuming a time dependence of the form e-iwt, we deduce that q5 satisfies 

This describes the propagation of disturbances over the water. In  this equation 
s = (gh)B is the propagation veloaity of long waves in a non-rotating ocean. 

It will be assumed that the water occupies a semi-infinite region with x > 0 
of the x, y plane (see figure 1), and that it is bounded by an irregular coastline 
specified by 

x = tJYL (2.3) 

where t(y) is in some sense small, and also a, stationary random function of y with 
zero mean, i.e. = 0, an overbar denoting an average over an ensemble of 
statistically equivalent coastlines. The boundary condition to be imposed on the 
coast follows by requiring that the fluid velocity normal to the shore be identically 
zero, i.e. 

u = v(a(//ay) on x = t ( y ) .  (2.4) 

We shall be interested in energy-exchange processes associated with the 
interaction of the shore with an incident Poincark wave, so that in approximating 
(2.4) by an equivalent condition imposed on x = 0 rather than x = t(y) care 
must be taken to include all terms likely to be of importance in these processes. 

8 F L M  57 
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Since [is small we expand the first equation of (2.4) in powers of 5 and stop after 
terms involving g2 : 

u = V ~ , - U ~ ( - ~ ~ ~ ~ ~ ~ + V ~ ( [ ,  on x = 0. (2 .5 )  

Now the fundamental effect of a randomly varying coastline on an incident 
wave is the generation of a whole spectrum of wavelike disturbances which are 
randomly distributed in direction. Physically it is anticipated that this scattered 
distribution of waves will separate into two parts, the first being a random 
distribution of Poincar6 waves, which radiate a portion of the incident energy 
into all directions away from the coastline, and the second consisting of a system 
of Kelvin waves which propagate along the coast in one direction. We shall 
argue (13 4) that in practice the energy of these Kelvin waves is dissipated in the 
coastal boundary layer before multiple scattering becomes an important issue. 

It would seem to be deshble, therefore, to adopt a representation of the fluid 
motions which distinguishes between mean or coherent motions and those 
associated with the randomly scattered wave field. To do this we introduce an 
ensemble average wave field, denoted by $, which, as above, represents a mean 
in the sense of an average taken over an ensemble of statistically equivalent 
coastlines. In  a particular realization of the wave field a correction must be 
applied to this coherent field in order to describe precisely the actual state of the 
fluid motions. This correction, denoted by $ I ,  is the random component of the 
field, and 

Similar partitions apply to the velocity components u and v. 

$ = $ + $ I .  (2.6) 

By taking the ensemble average of the wave equation (2.2) we deduce that 

(2 .7a,  b )  

As expected from the principle of superposition, the mean and random wave 
fields separately satisfy the wave equation. The coupling between the two fields 
is effected by the random boundary condition (2.5); this condition contains the 
physics of the scattering processes. 

Now from (2.1) we can deduce the following well-known expressions for the 
velocity field: 

' 1  (2.8) 
u = df$, - iw$,l/(w2-f ,) 

v = - s[f$, + iw4,1/(w2 -f2L 
and these may be used to express the boundary condition (2.5) in terms of 
and $ alone. Suppose that this condition is represented formally by 

2$ = (2.9) 

where 2 and G, and G, are linear operators. The operator 9 is assumed to be 
non-random, a n d 9 4  = 0 would therefore be the boundary condition appropriate 
to a perfectly straight coast x = 0; the operator G,  involves the random function [ 
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linearlg, and G, contains terms quadratic in c. Clearly 8, = 0, but e, $: 0, since 
62 + 0, and we may therefore set G, = B2 + GL. 
- 

Now take the ensemble average of (2.9): 

9$= G,+G2$+G3. (2.10) 

Subtracting this from (2.9) gives 

9$' = Gl$ + Gk$ + {G, $' - G,} + (G29' - G,}. (2.11) 

If the mean field $ is assumed to be known then condition (2.11) may be 
regarded as a boundary condition describing the generation of the random field 
by the interaction of the mean field with the irregularities of the coast. Actually 
the bracketed terms in (2.11) themselves describe interaction processes of the 
scattered field and these irregularities, i.e. multiple scattering effects. These 
terms are important in as much that it would not be permissible to neglect them 
in any calculation of the random field per se. However, when attention is focused 
on the properties of the mean field it is observed that the boundary condition 
(2.10) for $ involves correlations such as a,$' of the irregularities and the scattered 
waves. It is clear that the only non-trivial contributions come from those 
constituent waves of 4' which have been scattered within a correlation length 
L, say, of the point on the coast at which G, $' is to be evaluated. Here the length 
L refers to the correlation scale of the random irregularities g(y). Provided only 
that multiple scattering is not important over distances of order L, and this can 
always be guaranteed for sufficiently small 6, it is therefore valid to neglect the 
bracketed terms on the right-hand side of (2.11) when the scatteredjield $' is to 
be used to evaluate the correlation products of (2.10). Thus for this purpose we may 
write 

on x = 0. 
When this condition is used to determine 9' it  is seen that the result has a con- 

tribution of O(5) from the first term on the right, and one of O(g2) from the second. 
This solution when substituted into the right-hand side of (2.10) will therefore 
give terms of O(%) and higher. For sufficiently small the higher-order terms 
may be neglected in comparison with the lowest-order correction to the rectilinear 
coastline. This means that (2.10) and (2.12) may be further approximated by 

- 

- 

9$' = G,$+G;$ (2.12) 

2$ = G X + G 2 $ ,  9$' = Gl$. (2.13) 

If we now insert explicit expressions for the operators appearing in (2.13) we 

(2.14) 

For an alternative discussion of these points see Howe (1971). 

obtain respectively 

f&/ - iw$x = - [f& + i w 9 3  '5, - ff&, - iw$LxI 5 - m x x ,  - ~ G % X X l  F 
and (2.15) 

on x = 0. 
The procedure to be adopted in using these boundary conditions is as follows. 

Assume that $ is known. Use (2.15) in conjunction with the wave equation (2.7b) 
to determine q5' in terms of $. When this solution is substituted into (2.14) we 

f$I - iw9; = - [ f  $x + i 4 , I  cv - [f $XI/ - i 4 x x 1 5  

8-2 
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obtain a boundary condition involving the mean wave 3 alone. This analysis 
will be carried through in the next section for the case of an incident Poinear6 
wave interacting with the coastline. 

3. The specularly reflected field 
Consider now a plane Poincar6 wave specified by 

- 
$I  = exp[i(-l,x+m,y-wt)] (3.1) 

incident on the coastline in the ma,nner illustrated in figure I .  In this definition 
1, and o are assumed to be positive and Z,, m, and w satisfy the dispersion relation 

z; + m; = (o"f2)/s2 ( > 0) (3.2) 

obtained by formal substitution of (3.1) into the wave equation (2.2). In taking 
an average over an ensemble of irregular coastlines the field $I is statistically 
invariant, i.e. $ I  is part of the coherent wave field. Denote the coherent reflected 
field by 

where R is an appropriate reflexion coefficient. That this is an admissible form 
for the coherent reflected wave will be clear from the ensuing analysis. 

Thus we may now set (dropping explicit mention of the time dependence) 

- 

& = Rexp [i(l,x+m,y-at)], (3.3) 

- 
$ = e x p [ i ( - Z o ~ + ~ o y ) ] + ~ e ~ p [ ~ ( ~ o ~ + ~ o ~ ) l .  (3.4) 

When this is substituted into the right-hand side of the boundary condition (2.15) 
governing the generation of the random field we obtain 

(3.5) I f &  - iwdj, = (ag - E)  exp [imoyl, 
where C = wm,(l+R)+il,(l-R), 

B =,fmozo(l-R)+iwl;(l+R). 

However, in x > 0 the random field $' satisfies the wave equation (2.7b), and 
the appropriate solution satisfying the radiation condition may be expressed 
formally as a Fourier integral over wavenumbers m conjugate to y, namely 

say, where (3 .7 )  

and 1 is positive when real and positive imaginary otherwise. 
If the Fourier transform with respect to y of the boundary condition (3.5) is 

now taken and the solution (3.6) is then used to determine A(m), it is an easy 
matter to deduce that 

Note again that this formal solution is only suitable for determining correlation 
products in the manner to be described below. In (3.8) the pole a t  the zero of 
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wZ + imf, namely at m = - wIs is avoided by indenting the contour of integration 
in the m plane to pass above the singularity. This ensures that the radiation 
condition is satisfied. Equation (3.8) expresses the random field 4' as a summation 
over all possible plane wave modes satisfying (3.7). 

Now the irregularities <(y ) have been assumed to constitute a$ statiwnary 
process, so that there exists a correlation function 9, say, given by 

(3.9) 9 ( Y -  Y )  = t(Y) 5( Y ) ,  

which is an even function of y- Y .  The spectrum of the ra.ndom function 5 is 
a non-negative function defined by 

w) = J' 9(y)  exp r - iKYi  dy, 
m 

(3.10) 
-IT --a, 

the Fourier transform of the correlation function. 
Hence if the formal solution 4' given by (3.8) is substituted into the mean-wave 

boundary condition (2.14), with $ replaced by (3.4), and the result divided 
through by exp [im, y], we have 
(1  - $@) (im,f( 1 + R) + wZ,( 1 - R)} 

(i(m - m,) C - B) (m,(Zf + iwm) - iw(w2 - f 2 )  s-z} 
wl + inzf 

@(m - mo) dm. (3.1 1)  

Substituting for C, B from (3.5), and solving the resulting equation for the 
reflexion coefficient R, we finally deduce that 

(1 - g z p )  (ob, - im, f )  - pot- iwm,) g1 - iw(w",f2) s-2 gz 

(1 - g z g )  (WZ, + im,f) - (Z,f+ iwm,) ITl + iw(w"f2) 8-2 r2' 
R =  (3.12) 

where g1 and cr2 are 0(t2) complex-valued functions defined by 

Thus (3.12) is the desired expression for the reflexion coefficient of the 
specularly reflected coherent wave. We shall see later that IRI < 1, showing that 
the energy reflected in the coherent mode is less than that of the incident wave. 
The balance, of course, is made up by taking account of the energy scattered 
into the random wave modes. The analysis of this energy-transfer process con- 
stitutes the substance of $4 .  Note, however, that when < is set equal to zero in 
(3.12) we recover the following well-known expression for the reflexion coefficient 
€or reflexion by a rectilinear coastline: 

wz, - im,f R =  
do + im,f ' 

I n  this case IRI = I,  as expected. 

(3.14) 

4. Energy exchanges in scattering 
In  the previous section the reflexion coefficient for an incident plane Poincarh 

wave was calculated. That calculation is expected to be rather efficient for 
determining the properties of the mean field. However, it has been pointed out 
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that a complete discussion of the random component of the wave field, $', 
requires the use of the full boundary condition, represented formally by (2.11), 
which includes effects of multiple scattering of the random waves by the irregular 
coastline. Work is currently in hand on this aspect of the problem, and is based 
on the so-called kinetic theory ofwave propagation in random media (Howe 1972 b) .  
Here we shall confine ourselves to a rigorous discussion of the energy exchange 
processes between the mean and random fields. In  particular we shall determine 
respectively expressions for the energy flux into scattered Poincar6 and Kelvin 
waves. These Poincar6 waves are unlikely to be significantly affected by multiple 
scattering because they tend, on the whole, to be radiated directly away from 
the coast. AKelvinwave, however, is continuouslysubjected to further scattering. 
We shall argue that these multiple scattering effects are generally unimportant 
inasmuch as they affect the attenuation of the Kelvin wave modes. Actually 
such Scattering is expected to proceed over distances and times of order i//p/ 
(cf. Pinsent 1972). These scales are large compared with the incident wavelength 
and period, and we shall take the view that they are also large in comparison 
with the corresponding scales associated with dissipation in the coastal boundary 
layer. 

To analyse the energy exchange processes we return to the quadratic boundary 
condition (2.5). In  accordance with the discussion of the boundary conditions 
given in 3 2, the quadratic terms in [ may be replaced by their ensemble averages: 

- 
i.e. u = v[u-ux[-~uxxp, (4.1) 

'5t.v = (a9(Y)/aY)2/=0 = 0. 
- 

since 

In  the absence of irregularities in the coastline the right-hand side of (4.1) 
vanishes identically. The consequent vanishing of u on x = 0 then implies that 
no energy is lost from the ' coherent ' field. 

Take the ensemble average of (4.1): 

and subtract this from (4.1) : 

(4.3) 

Now let p = pgq5 denote the pressure perturbation due to the wave motions. 
Then if (4.2) is multiplied by - p  (at x = 0) ,  giving 

the following interpretation is in order. The left-hand side represents the rate a t  
which the mean wave field is doing work on the effective coastline a t  x = 0. 
This would be identically zero if the coast were perfectly straight, but the 
presence of irregularities represented by the right of (4.4) gives a non-zero result. 
This corresponds to the rate at  which energy is supplied to the wave motions of 
the random field. 
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Denote this power flux by - P,, where 

Similarly if (4.3) is multiplied byp‘ = pgq5’ and the ensemble average is taken 
we deduce that 

- - - - -- 
p = @If(* - Ezpl< + (p’v’gy - p ‘ u g  - *p’U;g>. (4.6) 

In this expression p)’uI is equal to the rate at  which the effective boundary at  
x = 0 does work on the random wave field. Actually the terms in braces on the 
right-hand side of (4.6) involve multiple scattering of random waves, and account 
for the redistribution of random energy amongst the available modes. The first 
two terms, on the other hand, represent the rate a t  which energy is supplied to 
the random field owing to the interaction of the mean field with the coastline. 
This will be denoted by PR: - 

PB = E Z y  - E z p f [ .  (4.7) 

Naturally we hope to verify that in some sense PM + PR = 0, corresponding to 
energy conservation in the exchange process. This result is indeed true when the 
functions Pal and PR are averaged over a wavelength and period of the incident 
coherent wave, i.e. denoting such averages by ( ) we shall see that 

(4.5) 

To carry through this procedure we again consider the case of an incident 
Poincar6 wave of the form given in (3.4). Actually we must be careful to deal 
with real-valued quantities when undertaking energy calculations, and we there- 
fore modify $ by the a,ddition of a complex conjugate (c.c.) and adjustment of 
the amplitude : 

(elf) + (PR) = 0. 

- 
q5 = Q{exp [ - il,x] + Rexp [il,x])exp [im,y] + C.C. (4.9) 

The incident wave is now reaI and of unit amplitude. 
Let us first use (4.7) to determine (PR). Now arguments used in $ 2  may be 

applied to show that the ensemble averages appearing in (4.7) may be evaluated 
by means of the local Born approximation solution given by equation (3.8). The 
random pressure fluctuation p‘ is equal to p g f .  The mean field velocity terms 
8 and U, appearing in (4.7) are expressed in terms of $ using the mean of equations 
(2.8). Carrying through the analysis, with the reflexion coefficient given by (3.12), 
we eventually deduce that, correct to O(f2), 

Q(m - m,) [mm, - $1 (- 1 + 01 + imf (wl +imf )* 
)dm, (4.10) 

(’R) = ,;? mf 

where the asterisk denotes the complex conjugate. 
Now this integral has a very interesting structure, since the terms in curly 

brackets show that only the real part of the function wl + imf is important in the 
energy-transfer process. When this expression is examined it is seen that the 
only non-trivial contributions from that bracket are from two sources: 
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(i) the pole at  01 + imf = 0,  
(ii) the interval Iml < [(u2-f2) /s2]4 over which I = {[ (02- f2) / s2]-m2p is 

real. 
Recalling the physical interpretation of the integral in equation (3.8) as 

a summation over all possible random wave motions scattered by the interaction 
between the mean wave field and the irregularities of the coastline, we conclude 
the the only random wave modes contributing to the energy transfer process are those 
labelled (i) and (ii) above. 

From (i), and using expression (3.7) for I ,  we have m = - w / s ,  and this term 
therefore gives the energy scattered into a wave mode which is trapped against 
the shoreline (since 1 is purely imaginary), i.e. the energy scattered into the 

(4.11) 

Note that this is positive definite, and vanishes iff = 0, i.e. in the absence of 
rotation. 

Similarly, the waves associated with (ii) consist of all propagating Poinoarc! 
modes. Using (4.10) it follows that their contribution is precisely 

where K~ = I (w2 -f2))is21;. Again this result is positive definite. Thus (PB) reduces 
to the sum of the two terms given by (4.11) and (4.12). 

The remarkable feature of these results is that they have been derived in- 
dependently of arguments familiar in classical scattering theory. That theory 
determines the energy scattered into the various permissible wave modes by 
first evaluating the solution (3.8) for $' asymptotically for large x or y.  The 
main contribution then comes from the pole (i), and from stationary-phase terms 
involving waves in the region (ii). The present approach demonstrates unequi- 
vocally that, provided we are interested in ensemble average energy fluxes, such 
an asymptotic analysis is redundant, since the only possible wave modes capable 
of supporting propagating energy must be those given by (i) and (ii). This is the 
physical significance of the term in curly brackets in (4.10). For a discussion 
along these lines of scattering processes in more general random media reference 
may be made to Howe ( 1 9 7 2 ~ ) .  

A similar analysis can be applied to the right-hand side of (4.5) to determine 
The last term on the right of (4.5) turns out to be of O ( ( p ) 2 )  andis therefore 

neglected, but the first two terms reduce precisely to the result (4.10) with the 
sign changed. This confirms our earlier statement that (Pw)+(PR) = 0. Since 
(P+[) is negative definite the energy exchanges are unidirectional, from the mean 
field to the random field, and not vice versa. This is in accordance with intuitive 
notions and the Second Law of Thermodynamics. 

Note also that (qTf) may alternatively be determined directly from the 
properties of the mean field obtained in the previous section. Indeed from (4.4) 

we have (el:,) = (3.a (4.13) 
where 3 = $pg(l+R)eimov+c.c., 
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a t  x = 0. Hence it follows that 

(4.14) 

This result is of the form familiar in the calculation of energy loss rates in 
reflexion processes. Using the formula derived in f j  3 for the reflexion coefficient 
R (equation (3.12)) together with the integral formulae (3.13), it is a simple, 
yet tedious, matter to show that (4.14) leads to  an expression for (Plcl) identical 
to that obtained above. However this approach lacks the precision of interpreta- 
tion of that based on the direct calculation of the interaction terms given by (4.5) 
and (4.7). This is because in computing the latter, the random wave field enters 
directly in the form of an integral over scattered waves representingp’, say, and 
the corresponding expression (4.10) is readily seen to describe unambiguously 
the manner in which these scattered modes contribute to the energy-transfer 
process. On the other hand the evaluation of (4.14) involves the use of the integral 
formulae (3.13) which are, to be sure, associated with the scattering mechanism, 
but enter (4.14) essentially by two distinct routes. The first of these is in the 
expression for p and the second in that for U. Thus, although the formal con- 
clusion is identical with that obtained by the direct method, the procedure fails 
to illuminate the underlying interaction mechanisms, expressed by the right- 
hand sides of (4.5) and (4.7), responsible for the channelling of the scattered 
energy into the propagating Poinear6 and Kelvin modes. 

5. Geophysical implications of the theory 
In  f j $  3 and 4 expressions have been derived for the specular reflexion coefficient 

R and the rates (PR)K and (PR)p at which energy is transferred from an incident 
Poinca.rk wave to the scattered Kelvin and Poincark wave fields. We now proceed 
to apply these results to an analysis of certain geophysically significant questions. 

For a given irregular coastline it is desirable to be able to estimate the portion 
of the energy content of an incident wave system that is scattered into the 
PoincarB ‘ocean wave noise’ and into the Kelvin wave modes. This is effectively 
measured by the magnitude of l - \Rlz .  Also, while it is clear that PoincarB 
waves are always generated by coastal irregularities, it is not always the case 
that a significant Kelvin wave field will be developed. Actually the efficiency of 
Kelvin wave generation is critically dependent on the form of the spectrum 
function @(m) of the coast. We shall see that a Kelvin wave is only generated 
when a certain ‘resonant interaction condition’ can be satisfied by the incident 
wave and the Fourier components of the coastal irregularities. In  this context 
it is natural to  enquire into the variation of the energy flux into the Kelvin modes 
as the frequency and direction of propagation of the incident wave change. This 
is important because most of the Kelvin wave energy is subsequently dissipated 
in the coastal boundary layer, and also because Kelvin waves have often been 
observed to have surprisingly large amplitudes along certain coasts (see, e.g. 
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Crease 1956; Munk, Snodgrass & Wimbush 1970). We shall also examine the 
energy partition ratio 0 = (PR)K/(PR)p giving the ratio of the fluxes into the 
Kelvin and Poincari: modes. This will be discussed in a semi-analytical manner 
as a function of the frequency of the incident wave. It should be noted, however, 
that small values of 0 do not necessarily imply a relatively negligible Kelvin wave 
field, since the energy of that wave is perforce confined to a fairly narrow coastal 
channel in which it would be quite possible for Kelvin waves of fairly substantial 
amplitude to be maintained by a relatively inefficient energy conversion 
mechanism. 

In order to illustrate the role of the spectrum @(m) of the coastal irregularities 
we shall introduce a cut-off wavenumberp > 0 such that for JmJ > p the spectral 
content is minimal, i.e. 

@(m) N 0 for Iml > p .  

This cut-off wavenumber is related to the correlation length L of c(y), discussed 
earlier, by the relation p L  N 1. 

First consider equation (4.11) giving the power flux (PR)K from an incident 
Poinear6 wave into the Kelvin wave mode. From what has been said above it is 
clear that this flux is significant provided that 1 (w/.) +m,J < p, in other words, 
provided that there exists a significant spectral component K ( - p < K < p) such 
that 

m,+K = -w/s .  (5.1) 

In  this equation m, is the coastal component of the wavenumber of the incident 
Poincari: wave and - w/s  that of the scattered Kelvin wave. The wavenumber K 

is associated with one of the Fourier components of the coast. Hence (5.1) 
constitutes a resonant interaction condition specifying conservation of wave- 
number in the coastal direction during wave-wave interactions between the 
incident wave and the stationary wave Fourier components of the coastline. This 
is the condition which two interacting waves must satisfy in order to achieve 
a non-zero transfer of energy between propagating modes (see, e.g. Phillips 1960). 
Note that the related condition requiring conservation of frequencies is auto- 
matically satisfied, since the Fourier components of c(y) are time-independent. 

Consider next the magnitude of the reflexion coefficient R (equation (3.12)). 
This is readily obtained with a minimum of further analysis by noting that, by 
equation (4.14), 

i.e. 

where 

IR12= l - E K - E p ,  

KO @(m - m,) (mm, - d / s 2 ) 2  1.5 - m2(t 
dm. (5.4) and 

Both of these quantities E,  and E p  are positive definite. They are also of O($),  
where E is a non-dimensional parameter characterizing the magnitude of the 

EP = ( @ 2 p )  410 - m2 0 s - K O  ( w2/s2)  - m2 
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coastal irregularities and which has been assumed to  be small in the earlier 
analysis. Before identifying E and estimating its value in the geophysical context, 
let us observe that EK and E p  are respectively equal to the Kelvin and Poincar6 
wave eficiency factors defined by 

energy flux into Kelvin wave 

energy flux into Poincar6 waves 
incident energy flux 

E ,  = 
incident energy flux ' 

E p  = 

The consistency of these definitions follows by noting that the incident energy 
flux is precisely equal to pwZOg2/[2(w2-f2)],  and by referring to the formulae 
(4.11) and (4 .12) .  

The energy partition ratio 0 may also be expressed in terms of these quantities: 

. (5.5) @ = - =  EK (nfw/s2) (w /s  + m,I2 @@/s + m,) 

@(m-m,) (mm0-w2/s2)2 ( ~ ~ - r n ~ l ) / ( w 2 / 3 ~ ) - m 2 d m  
E p  j1:. 

Let us now express EK, Ep and 0 in terms of a fundamental set of non- 
dimensional parameters which are appropriate to specify the coastal configura- 
tion. Thus we shall write the spectrum function @(m) in the form 

W m )  = (F/P)S(rn/P)u), (5.6) 

where 2 = R(0) and S(m/,u) is a dimensionless function of order unity with the 
properties S(m/p) = 0 for lm/rUl > 1,) 

jm S(h)dh= 1. 
- m  

(5.7) 

Introducing a polar representation for the incident Poincar6 wave specified 

by (zo9mo)' (Zo,mo) = K ~ ( C O S ~ ,  sin@, 1/31 < $n, (5.8) 

reduces equation (3 .2) ,  the Poincar6 wave dispersion relakion, to 

KO = (f/4 (a2 - 1 ) 4  (5.9) 

where cr = wlf  > 1. The formulae (5 .3 ) ,  (5.4) and (5.5) may then be expressed in 
the following forms: 

cr + y sin 8 
cr-ysin8 EK = ~ ~ T O $ ~ ~ G C O S ~  X(a[cr+ysin8]), 

4 p 2 y  cos 8 
E -  I ,  - a(a2 - yz sin2 8) 

(5.10) 

(5.11) 

0 = na2cr(cr+ysin8)2X(a[cr+ysin8)]/1. (5 .12)  

In these expressions the dimensionless parameters a, p ,  y and I are defined by 

a =f/'P, p = (f/') (p)', y = (a2- ')'J 

(5.13) 
S(h - ay sin 8) [aa2 - hy sin 812 (av2 - h2)i d h  

a 2 c r 2  - A2 - aY 



124 M .  8. Howe and L. A .  Mysalc 

Now Poinear6 and Kelvin waves generally have frequencies w thab are 
characteristic of storm surges and the M2 (semi-diurnal) and the K,  (diurnal) tidal 
constituents, so that cr = w/f  20(1). From (5.9) we also note that the limiting 
cases of cr 1 and cr --f -t 1 correspond to very short and very long incident 
wavelengths respectively. Further we ha.ve, typically,f N 

h 2: lO5cm and, since most continental coastlines have an extent of at  most 
several thousand kilometres, l/p N L < los em, and therefore 

s-l, g N 1 0 3  

a =,f/p(gh)* 5 O(1). 

Finally, note that /3 5 0.1, since the root-mean-square amplitude of the coastal 
irregularity, (p)*, is likely to be at most of order lo2 kilometres. 

From (5.10) and (5.11) it is seen that E,  and E, are both of 0(p2) ,  and therefore 
from (6 .2 )  that 1 - JRI2 = 0(p2) < I .  We may therefore identify with the 
parameter e referred to above. The smallness of this parameter indicates that in 
practice a relatively small proportion of the incident wave energy is actually 
transferred to the scattered field. Further, since E,, E,  x y = (a2- I)&, the 
energy content of the random field is likely to be especially small for frequencies 
in the inertial range (cr -++ l) ,  i.e. for very long waves. This is in qualitative 
agreement with recent tidal observations off the coast of California. Munk et al. 
(1970) observed that along the full extent of the Californian coast the magnitude 
of the M2 constituent (CT 2: 2 )  is considerably greater than that of the K,  con- 
stituent (cr 2: I ) .  

In  order to examine the significance of our results in a more specific manner we 
consider a definite form for the spectrum function of the coasta.1 irregularities, viz., 

X(m/p,) = n-: e-m2ip2. (5.14) 

Particular interest is attached to the generation efficiency of the Kelvin waves, 
E,, which may now be given the explicit form 

cr + y sin 8 
4rr+/3'2 cr-ysin8 

(5.15) -- E~ - aycrcos~(  . )exp[-a2(cr+ysin8)21. 

It is clear from this expression that when a is large (very long coastal correlation 
lengths) E ,  N 0 since cr + y sin 8 + 0 for 18 I < *IT. In  other words, Kelvin waves 
will not tend to be generated by relatively smooth coastlines, in agreement with 
intuition. In  the opposite limit of a + 0 (short correlation lengths), E,  is also 
small except possibly for very short incident waves (cr large). 

In figure 2 the dependence of E,  specified by (5.15) on the angle of incidence 
0 of the incident Poinear6 wave is illustrated for 0.2 < a 6 1.0, and 1- 1 < cr 6 3.0. 
Note that each curve has a single maximum, and that in general the curves 
become more peaked as the frequency CT increases. Also it is apparent that 
EK/4d,/32 5 O( 11, and hence E,  itself is indeed small since f12 < 1.  For a fixed 
value of a N 1 (figures 2(a, b ) )  it  ill be noted that with increasing cr efficient 
Kelvin wave generation is associated increasingly with 'forward scatter ', in the 
sense that the peak efficiencies tend to occur for incident waves whose velocities 
of propagation are in the same direction as that of the Kelvin modes. On the 
other hand, for smaller values of the correlation scale a, figures 2 (d ,  e) indicate 
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-90' - 60' - 30" 0" 30" 60" 90" 

- 90" - 60" - 30" 0" 30" 60' 90" 

Incidence angle, 0 

FIGURE 2. The Kelvin wave efficiency factor E ~ / 4 / 3 ~  JT, for a coast whose irregularities are 
characterized by a Gaussian spectrum function. The correlation length non-dimensionalized 
by (gh)h/ f  is denoted by a, and u is the incident wave frequency non-dimensionalized by f. 
(a) a = 1. ( b )  a = 0.7. (c) a = 0.5. (d)  a = 0.3. (e )  a = 0.2. 

that 'back scatter ' generation of Kelvin waves predominates with increasing 
frequency r. Intermediate values of a (0.3 < a < 0.5) provide a uniform transi- 
tion between these extremes. 

Similarly for fixed frequency r the figures illustrate that as the correlation 
scale a! of the irregularities decreases, back scatter becomes progressively more 
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Incidence angle, 8 

FIGURE 2 (d , e ) .  For legend see previous page. 

efficient, and also the peaks of the maxima sharper, indicating a tendency for the 
Kelvin wave scattering mechanism to become highly selective. 

Now turn attention to the energy partition ratio 0 given by (5.12). The de- 
pendence of 0 on a shown explicitly in (5.12) implies that for small correlation 
scales 0 might also be quite small, most of the scattered energy therefore being 
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directed into the Poincar6 ocean wave noise. We can analyse this a little more 
precisely by considering the variation of 0 with the frequency B in the two 
extremes of large and small a. 

When the correlation length a is large compared with the incident wavelength, 
the spectrum function S appearing in the integral of (5.13) decays to zero very 
rapidly for relatively small departures of p - ay sin 19 from zero. The integral may 
therefore be estimated in this case by expanding about ,u = ay sin 8. When further 
B B 1, we fhally deduce that 

m(l+ sin 8)2 
O N  .X(aa[l +sine]) (a 3 l),  toss e (5.16) 

provided that 8 -$: -t&i-. It is clear that in this limit the rela.tive efficiency of 
Kelvin wave generation will tend to be rather small because of the large argument 
of the spectrum S. 

In  the long wavelength limit, however, B -f + 1 and the above approximation 
is no longer appropriate. In this case y -+ 0 and the range of integration in (5.13) 
becomes a small interval about h = 0, from which we deduce that I N 2a2y2a2S( 0) ,  
and (5.12) then yields 

@=--. a 7JS(ar) 
(72-  1 2X(O) 

(5.17) 

Now 0 can be very large, indicating a preferential generation of Kelvin waves. 
It appears, therefore, that an incident Poincar6 wave whose wavelength is 

short compared with the correlation scale will scatter preferentially a field of 
Poincard modes. Longer wavelength incident waves, however, generally result 
in a strong Kelvin wave field, except possibly for very 'smooth ' coasts for which 
8(ar)  could still be quite small. 

6.  Concluding remarks 
Let us now summarize the main conclusions of the geophysical discussion of $5. 
The important dimensionless parameter governing the magnitude of the 

energy extracted from an incident Poincark wave interacting with an irregular 
coastline is p = (p)if/s. The intensity of the scattering into both the Kelvin 
and the Poincar6 modes is proportional to p2. In situations where the present 
theory is likely to be applicable /3 rarely exceeds 0.1, so that in general the 
proportion of the incident energy actually lost to the scattered field, and repre- 
sented analytically by E ,  and Ep, tends to be rather small. Of course the relative 
smallness of these factors does not imply that the energy contained in these 
fields is necessarily insignificant. Indeed energy scattered into the Kelvin mode 
would be expected to remain in a fairly narrow channel along the coast, so that 
even quite a moderate power flux could conceivably maintain a wave system of 
considerable amplitude. 

Analysis of a Gaussian model of the coastal spectrum function indicates that 
in the case of a relatively smooth coast, as measured on a scale of (gh)*/f, Kelvin 
waves are preferentially generated by incident waves propagating in the same 
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direction as the Kelvin modes (‘forward scatter’). More irregular coastlines, 
however, for which the correlation length is much shorter, tend to extract rather 
more of the energy necessary to support the Kelvin wave motions from incident 
waves propagating in the opposite direction (strong ‘back scatter ’), and also 
exhibit a tendency to be more sharply tuned in the sense that, as the correlation 
scale diminishes, only waves incident in progressively narrower bands of direc- 
tion of propagation actually contribute to this power flux. 

Examination cf the partition ratio 0 implies that Kelvin waves are scattered 
in preference to Poinear6 waves when the frequency of the incident wave 
is rather small, the reverse being the case at higher frequencies. For reasons 
discussed above, however, this should not be taken as a measure of the relative 
magnitudes of the scattered wave fields. Actually the intensity of the Kelvin 
field, for example, is determined by the competing influences of (i) input from 
the incident Poincart5 waves, (ii) losses due to attenuation mechanisms in the 
coastal boundary layer, and (iii) losses due to further scattering. An analysis of 
these composite effects is currently being undertaken and will appear in a future 
publication, but it may be noted that (iii) is expected to be important only over 
distances of O( i/P2), from which it may be argued that the attentuation 
mechanisms in (ii) are likely to be of more significance. 

The work reported here was undertaken while L. A.M. was it Senior Visitor 
in the Department of Applied Mathematics and Theoretical Physics, University 
of Cambridge, during i97i-2, and was partly supported by the National Research 
Council of Canada. 
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